## Midterm Exam Calculus 2

10 March 2016, 14:00-16:00

The exam consists of 4 problems. You have 120 minutes to answer the questions. You can achieve 100 points which includes a bonus of 10 points.

1. $[8+7+5$ Points. $]$

For the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ with

$$
f(x, y)=\left\{\begin{array}{cc}
\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\
0 & \text { if }(x, y)=(0,0)
\end{array},\right.
$$

(a) use the definition of partial derivatives to calculate $f_{x}(0,0)$ and $f_{y}(0,0)$,
(b) use the definition of the directional derivative to compute $D_{\boldsymbol{v}} f(0,0)$ for a unit vector $\boldsymbol{v}=(u, w) \in \mathbb{R}^{2}$.
(c) Is $f$ differentiable at $(x, y)=(0,0)$ ? Justify your answer.
2. $[\mathbf{1 0}+5+\mathbf{1 0}$ Points.]

Consider the curve parametrized by $\mathbf{r}:[-1,1] \rightarrow \mathbb{R}^{3}$ with

$$
\mathbf{r}(t)=t \mathbf{i}+\frac{1}{3}(1+t)^{3 / 2} \mathbf{j}+\frac{1}{3}(1-t)^{3 / 2} \mathbf{k}
$$

(a) Determine the parametrization by arc length.
(b) For each point on the curve, determine a unit tangent vector.
(c) At each point on the curve, determine the curvature of the curve.
3. $[\mathbf{1 0}+\mathbf{1 0}+\mathbf{5}$ Points.]
(a) Use the method of Lagrange multipliers to find the points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ on the unit sphere $x^{2}+y^{2}+z^{2}=1$ where $f(x, y, z)=x+y-z$ assumes its maximum value and its minimum value, respectively.
(b) Show that the tangent plane of the unit sphere at the point $\left(x_{1}, y_{1}, z_{1}\right)$ is given by the equation $f(x, y, z)=f\left(x_{1}, y_{1}, z_{1}\right)$ and the tangent plane of the unit sphere at the point $\left(x_{2}, y_{2}, z_{2}\right)$ is given by the equation $f(x, y, z)=f\left(x_{2}, y_{2}, z_{2}\right)$.
(c) Let $\left(x_{0}, y_{0}, z_{0}\right) \in \mathbb{R}^{3}$. Show that $f$ agrees with its linearization at $\left(x_{0}, y_{0}, z_{0}\right)$.

## 4. [20 Points.]

Determine

$$
\iiint_{W}\left(x^{2}+y^{2}+2 z^{2}\right) \mathrm{d} V
$$

where $W$ is the solid cylinder defined by the inequalities $x^{2}+y^{2} \leq 4$ and $-1 \leq z \leq 2$.

## Solutions

1. (a) Following the definition, the partial derivative of $f$ with respect to $x$ at $(x, y)=$ $(0,0)$ is

$$
f_{x}(0,0)=\lim _{h \rightarrow 0} \frac{f(0+h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{h \cdot 0}{\sqrt{h^{2}+0^{2}}}-0}{h}=\lim _{h \rightarrow 0} 0=0 .
$$

Similarly

$$
f_{y}(0,0)=\lim _{h \rightarrow 0} \frac{f(0,0+h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{\frac{0 \cdot h}{\sqrt{0^{2}+h^{2}}}-0}{h}=\lim _{h \rightarrow 0} 0=0 .
$$

(b) Let $\boldsymbol{v}=(u, w) \in \mathbb{R}^{2}$ be a unit vector. Then

$$
\begin{aligned}
D_{v} f(0,0) & =\lim _{t \rightarrow 0} \frac{f((0,0)+t \boldsymbol{v})-f(0,0)}{t}=\lim _{t \rightarrow 0} \frac{f((0+t u, 0+t w))-f(0,0)}{t} \\
& =\lim _{t \rightarrow 0} \frac{\frac{t u \cdot t w}{\sqrt{t^{2} u^{2}+t^{2} w^{2}}}-0}{t}=\lim _{t \rightarrow 0} \frac{t^{2} u w}{t^{2} \sqrt{u^{2}+w^{2}}}=\frac{u w}{\sqrt{u^{2}+w^{2}}}=u w,
\end{aligned}
$$

where in the last equality we used that $\boldsymbol{v}$ has unit length.
(c) $f$ is not differentiable at $(0,0)$. If $f$ was differentiable at $(0,0)$ then the directional derivative in (b) would be

$$
D_{\boldsymbol{v}} f(0,0)=\nabla f(0.0) \cdot \boldsymbol{v}=f_{x}(0,0) u+f_{y}(0,0) w=0
$$

for all $u, w$ with $u^{2}+w^{2}=1$ as according to (a) we have $f_{x}(0,0)=f_{y}(0,0)=0$. This contradicts the result in (b) for $u, w \neq 0$.
2. (a) The tangent vector

$$
\mathbf{r}^{\prime}(t)=\mathbf{i}+\frac{1}{2}(1+t)^{1 / 2} \mathbf{j}-\frac{1}{2}(1-t)^{1 / 2} \mathbf{k}
$$

has length

$$
\left\|\mathbf{r}^{\prime}(t)\right\| \|=\left(1+\frac{1}{4}(1+t)+\frac{1}{4}(1-t)\right)^{1 / 2}=\sqrt{\frac{3}{2}} .
$$

The arc length is hence

$$
s(t)=\int_{-1}^{t}\left|\mathbf{r}^{\prime}(\tau)\right| \mathrm{d} \tau=\sqrt{\frac{3}{2}}(t+1)
$$

Note that $s(-1)=0$ and $s(1)=\sqrt{6}$ where the latter is the length of the curve. Inverting for $t$ gives

$$
t(s)=\sqrt{\frac{2}{3}} s-1
$$

The parametrization by arc length is hence given by

$$
\tilde{\mathbf{r}}(s)=\mathbf{r}(t(s))=\left(\sqrt{\frac{2}{3}} s-1\right) \mathbf{i}+\frac{1}{3}\left(\sqrt{\frac{2}{3}} s\right)^{3 / 2} \mathbf{j}+\frac{1}{3}\left(2-\sqrt{\frac{2}{3}} s\right)^{3 / 2} \mathbf{k} .
$$

(b) The unit tangent vector is given by

$$
\mathbf{T}=\frac{\mathrm{d} \tilde{\mathbf{r}}(s)}{\mathrm{d} s}=\sqrt{\frac{2}{3}} \mathbf{i}+\frac{1}{2} \sqrt{\frac{2}{3}}\left(\sqrt{\frac{2}{3}} s\right)^{1 / 2} \mathbf{j}-\frac{1}{2} \sqrt{\frac{2}{3}}\left(2-\sqrt{\frac{2}{3}} s\right)^{1 / 2} \mathbf{k}
$$

which agrees with

$$
\mathbf{T}=\frac{1}{\left\|\mathbf{r}^{\prime}(t)\right\|} \mathbf{r}^{\prime}(t)
$$

for $t=\sqrt{\frac{2}{3}} s-1$.
(c) The curvature is given by

$$
\begin{aligned}
\kappa & =\left\|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} s}\right\|=\left\|\frac{1}{6}\left(\sqrt{\frac{2}{3}} s\right)^{-1 / 2} \mathbf{j}+\frac{1}{6}\left(2-\sqrt{\frac{2}{3}} s\right)^{-1 / 2} \mathbf{k}\right\| \\
& =\frac{1}{6}\left(\frac{1}{\sqrt{\frac{2}{3}} s}+\frac{1}{2-\sqrt{\frac{2}{3}} s}\right)^{1 / 2}
\end{aligned}
$$

which agrees with

$$
\left\|\frac{\mathrm{d} \mathbf{T}}{\mathrm{~d} t}\right\| \frac{1}{\left\|\frac{\mathrm{dr}}{\mathrm{~d} t}\right\|}
$$

for $t=\sqrt{\frac{2}{3}} s-1$.
3. (a) Let $g(x, y, z)=x^{2}+y^{2}+z^{2}$. Then the unit sphere is the level set of $g$ with value 1 . At an extremum of $f$ under the constraint $g(x, y, z)=1$ there is according to the theorem on Lagrange multipliers a $\lambda \in \mathbb{R}$ such that $\lambda \nabla f(x, y, z)=\nabla g(x, y, z)$. Together with the constraint $g(x, y, z)=1$ this gives the following four scalar equations:

$$
\begin{aligned}
\lambda f_{x}(x, y, z) & =g_{x}(x, y, z) \\
\lambda f_{y}(x, y, z) & =g_{y}(x, y, z) \\
\lambda f_{z}(x, y, z) & =g_{z}(x, y, z) \\
x^{2}+y^{2}+z^{2} & =1
\end{aligned}
$$

i.e.

$$
\begin{aligned}
\lambda & =2 x, \\
\lambda & =2 y, \\
-\lambda & =2 z, \\
x^{2}+y^{2}+z^{2} & =1
\end{aligned}
$$

We see that $x=y=-z$ which needs to be satisfied together with $x^{2}+y^{2}+z^{2}=1$ ( $\lambda$ is then given by, e.g., $2 x$ ). This leads to the two points

$$
\left(x_{1}, y_{1}, z_{1}\right)=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right)
$$

and

$$
\left(x_{2}, y_{2}, z_{2}\right)=\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)
$$

From the Weierstrass Extreme Value Theorem we know that $f$ assumes its maximum and minimum values on the unit sphere. From $f\left(x_{1}, y_{1}, z_{1}\right)=\sqrt{3}$ and
$f\left(x_{2}, y_{2}, z_{2}\right)=-\sqrt{3}$ we see that $\left(x_{1}, y_{1}, z_{1}\right)$ is the point where $f$ assumes its maximum and $\left(x_{2}, y_{2}, z_{2}\right)$ is the point where $f$ assumes its minimum.
(b) The tangent plane of the unit sphere at $\left(x_{k}, y_{k}, z_{k}\right)$ is orthogonal to $\nabla g\left(x_{k}, y_{k}, z_{k}\right)$ for $k=1,2$. The tangent plane at $\left(x_{k}, y_{k}, z_{k}\right)$ is hence given by $\nabla g\left(x_{k}, y_{k}, z_{k}\right)$. $\left(x-x_{k}, y-y_{k}, z-z_{k}\right)=0$. For $\left(x_{1}, y_{1}, z_{1}\right)$ this gives

$$
\begin{aligned}
& 2\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}\right) \cdot\left(x-\frac{1}{\sqrt{3}}, y-\frac{1}{\sqrt{3}}, z+\frac{1}{\sqrt{3}}\right)=0 \\
\Leftrightarrow & \frac{1}{\sqrt{3}} x-\frac{1}{3}+\frac{1}{\sqrt{3}} y-\frac{1}{3}-\frac{1}{\sqrt{3}} z-\frac{1}{3}=0 \\
\Leftrightarrow & x+y-z=\sqrt{3} .
\end{aligned}
$$

As $\sqrt{3}=f\left(x_{1}, y_{1}, z_{1}\right)$ we see that the tangent plane of the unit sphere at $\left(x_{1}, y_{1}, z_{1}\right)$ satisfies $f(x, y, z)=f\left(x_{1}, y_{1}, z_{1}\right)$.
Similarly for $\left(x_{x}, y_{x}, z_{x}\right)$ then tangent plane is given by

$$
\begin{aligned}
& 2\left(-\frac{1}{\sqrt{3}},-\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right) \cdot\left(x+\frac{1}{\sqrt{3}}, y+\frac{1}{\sqrt{3}}, z-\frac{1}{\sqrt{3}}\right)=0 \\
\Leftrightarrow & -\frac{1}{\sqrt{3}} x-\frac{1}{3}-\frac{1}{\sqrt{3}} y-\frac{1}{3}+\frac{1}{\sqrt{3}} z-\frac{1}{3}=0 \\
\Leftrightarrow & x+y-z=-\sqrt{3} .
\end{aligned}
$$

As $-\sqrt{3}=f\left(x_{2}, y_{2}, z_{2}\right)$ we see that the tangent plane of the unit sphere at $\left(x_{2}, y_{2}, z_{2}\right)$ satisfies $f(x, y, z)=f\left(x_{2}, y_{2}, z_{2}\right)$.
(c) The linearization of $f$ at $\left(x_{0}, y_{0}, z_{0}\right)$ is given by

$$
\begin{aligned}
L(x, y, z) & =f\left(x_{0}, y_{0}, z_{0}\right)+f_{x}\left(x_{0}, y_{0}, z_{0}\right)\left(x-x_{0}\right)+f_{y}\left(x_{0}, y_{0}, z_{0}\right)\left(y-y_{0}\right)+f_{z}\left(x_{0}, y_{0}, z_{0}\right)\left(z-z_{0}\right) \\
& =x_{0}+y_{0}-z_{0}+1 \cdot\left(x-x_{0}\right)+1 \cdot\left(y-y_{0}\right)-1 \cdot\left(z-z_{0}\right) \\
& =x+y-z
\end{aligned}
$$

which agrees with $f(x, y, z)$.
4. The cylinder geometry suggests to use cylinder coordinates, i.e. $x=r \cos \theta, y=$ $r \sin \theta$ and $z$ stays $z$. Then

$$
\begin{aligned}
\iiint_{W}\left(x^{2}+y^{2}+2 z^{2}\right) \mathrm{d} V & =\int_{-1}^{2} \int_{0}^{2} \int_{0}^{2 \pi}\left((r \cos \theta)^{2}+(r \sin \theta)^{2}+2 z^{2}\right) r \mathrm{~d} \theta \mathrm{~d} r \mathrm{~d} z \\
& =2 \pi \int_{-1}^{2} \int_{0}^{2}\left(r^{3}+2 z^{2} r\right) \mathrm{d} r \mathrm{~d} z \\
& =2 \pi \int_{-1}^{2}\left[\frac{1}{4} r^{4}+z^{2} r^{2}\right]_{r=0}^{r=2} \mathrm{~d} z \\
& =2 \pi \int_{-1}^{2}\left(4+4 z^{2}\right) \mathrm{d} z \\
& =2 \pi\left[4 z+\frac{4}{3} z^{3}\right]_{z=-1}^{z=2} \\
& =2 \pi\left(\left(8+\frac{32}{3}\right)-\left(-4-\frac{4}{3}\right)\right) \\
& =2 \pi\left(12+\frac{36}{3}\right) \\
& =48 \pi
\end{aligned}
$$

