
Midterm Exam Calculus 2

10 March 2016, 14:00-16:00

The exam consists of 4 problems. You have 120 minutes to answer the ques-
tions. You can achieve 100 points which includes a bonus of 10 points.

1. [8+7+5 Points.]

For the function f : R2 → R with

f(x, y) =

{
xy√
x2+y2

if (x, y) 6= (0, 0)

0 if (x, y) = (0, 0)
,

(a) use the definition of partial derivatives to calculate fx(0, 0) and fy(0, 0),

(b) use the definition of the directional derivative to compute Dvf(0, 0) for a unit
vector v = (u,w) ∈ R2.

(c) Is f differentiable at (x, y) = (0, 0)? Justify your answer.

2. [10+5+10 Points.]

Consider the curve parametrized by r : [−1, 1]→ R3 with

r(t) = t i +
1

3
(1 + t)3/2 j +

1

3
(1− t)3/2 k.

(a) Determine the parametrization by arc length.

(b) For each point on the curve, determine a unit tangent vector.

(c) At each point on the curve, determine the curvature of the curve.

3. [10+10+5 Points.]

(a) Use the method of Lagrange multipliers to find the points (x1, y1, z1) and (x2, y2, z2)
on the unit sphere x2 + y2 + z2 = 1 where f(x, y, z) = x + y − z assumes its
maximum value and its minimum value, respectively.

(b) Show that the tangent plane of the unit sphere at the point (x1, y1, z1) is given
by the equation f(x, y, z) = f(x1, y1, z1) and the tangent plane of the unit sphere
at the point (x2, y2, z2) is given by the equation f(x, y, z) = f(x2, y2, z2).

(c) Let (x0, y0, z0) ∈ R3. Show that f agrees with its linearization at (x0, y0, z0).

4. [20 Points.]

Determine ∫∫∫
W

(x2 + y2 + 2z2) dV,

where W is the solid cylinder defined by the inequalities x2+y2 ≤ 4 and −1 ≤ z ≤ 2.



Solutions

1. (a) Following the definition, the partial derivative of f with respect to x at (x, y) =
(0, 0) is

fx(0, 0) = lim
h→0

f(0 + h, 0)− f(0, 0)

h
= lim

h→0

h·0√
h2+02

− 0

h
= lim

h→0
0 = 0.

Similarly

fy(0, 0) = lim
h→0

f(0, 0 + h)− f(0, 0)

h
= lim

h→0

0·h√
02+h2

− 0

h
= lim

h→0
0 = 0.

(b) Let v = (u,w) ∈ R2 be a unit vector. Then

Dvf(0, 0) = lim
t→0

f((0, 0) + tv)− f(0, 0)

t
= lim

t→0

f((0 + tu, 0 + tw))− f(0, 0)

t

= lim
t→0

tu·tw√
t2u2+t2w2 − 0

t
= lim

t→0

t2uw

t2
√
u2 + w2

=
uw√
u2 + w2

= uw,

where in the last equality we used that v has unit length.

(c) f is not differentiable at (0, 0). If f was differentiable at (0, 0) then the directional
derivative in (b) would be

Dvf(0, 0) = ∇f(0.0) · v = fx(0, 0)u+ fy(0, 0)w = 0

for all u,w with u2 +w2 = 1 as according to (a) we have fx(0, 0) = fy(0, 0) = 0.
This contradicts the result in (b) for u,w 6= 0.

2. (a) The tangent vector

r′(t) = i +
1

2
(1 + t)1/2 j− 1

2
(1− t)1/2 k

has length

‖r′(t)‖| =
(
1 +

1

4
(1 + t) +

1

4
(1− t)

)1/2
=

√
3

2
.

The arc length is hence

s(t) =

∫ t

−1
|r′(τ)| dτ =

√
3

2
(t+ 1).

Note that s(−1) = 0 and s(1) =
√

6 where the latter is the length of the curve.
Inverting for t gives

t(s) =

√
2

3
s− 1.

The parametrization by arc length is hence given by

r̃(s) = r(t(s)) =
(√2

3
s− 1

)
i +

1

3

(√2

3
s
)3/2

j +
1

3

(
2−

√
2

3
s
)3/2

k .

2



(b) The unit tangent vector is given by

T =
dr̃(s)

ds
=

√
2

3
i +

1

2

√
2

3

(√2

3
s
)1/2

j− 1

2

√
2

3

(
2−

√
2

3
s
)1/2

k

which agrees with

T =
1

‖r′(t)‖
r′(t)

for t =
√

2
3
s− 1.

(c) The curvature is given by

κ =

∥∥∥∥dT

ds

∥∥∥∥ =

∥∥∥∥∥1

6

(√2

3
s
)−1/2

j +
1

6

(
2−

√
2

3
s
)−1/2

k

∥∥∥∥∥
=

1

6

 1√
2
3
s

+
1

2−
√

2
3
s

1/2

which agrees with ∥∥∥∥dT

dt

∥∥∥∥ 1∥∥dr
dt

∥∥
for t =

√
2
3
s− 1.

3. (a) Let g(x, y, z) = x2+y2+z2. Then the unit sphere is the level set of g with value 1.
At an extremum of f under the constraint g(x, y, z) = 1 there is according to the
theorem on Lagrange multipliers a λ ∈ R such that λ∇f(x, y, z) = ∇g(x, y, z).
Together with the constraint g(x, y, z) = 1 this gives the following four scalar
equations:

λfx(x, y, z) = gx(x, y, z),
λfy(x, y, z) = gy(x, y, z),
λfz(x, y, z) = gz(x, y, z),
x2 + y2 + z2 = 1

i.e.
λ = 2x,
λ = 2y,
−λ = 2z,

x2 + y2 + z2 = 1.

We see that x = y = −z which needs to be satisfied together with x2+y2+z2 = 1
(λ is then given by, e.g., 2x). This leads to the two points

(x1, y1, z1) =
( 1√

3
,

1√
3
,− 1√

3

)
and

(x2, y2, z2) =
(
− 1√

3
,− 1√

3
,

1√
3

)
.

From the Weierstrass Extreme Value Theorem we know that f assumes its max-
imum and minimum values on the unit sphere. From f(x1, y1, z1) =

√
3 and

3



f(x2, y2, z2) = −
√

3 we see that (x1, y1, z1) is the point where f assumes its
maximum and (x2, y2, z2) is the point where f assumes its minimum.

(b) The tangent plane of the unit sphere at (xk, yk, zk) is orthogonal to ∇g(xk, yk, zk)
for k = 1, 2. The tangent plane at (xk, yk, zk) is hence given by ∇g(xk, yk, zk) ·
(x− xk, y − yk, z − zk) = 0. For (x1, y1, z1) this gives

2
( 1√

3
,

1√
3
,− 1√

3

)
·
(
x− 1√

3
, y − 1√

3
, z +

1√
3

)
= 0

⇔ 1√
3
x− 1

3
+

1√
3
y − 1

3
− 1√

3
z − 1

3
= 0

⇔ x+ y − z =
√

3.

As
√

3 = f(x1, y1, z1) we see that the tangent plane of the unit sphere at
(x1, y1, z1) satisfies f(x, y, z) = f(x1, y1, z1).

Similarly for (xx, yx, zx) then tangent plane is given by

2
(
− 1√

3
,− 1√

3
,

1√
3

)
·
(
x+

1√
3
, y +

1√
3
, z − 1√

3

)
= 0

⇔ − 1√
3
x− 1

3
− 1√

3
y − 1

3
+

1√
3
z − 1

3
= 0

⇔ x+ y − z = −
√

3.

As −
√

3 = f(x2, y2, z2) we see that the tangent plane of the unit sphere at
(x2, y2, z2) satisfies f(x, y, z) = f(x2, y2, z2).

(c) The linearization of f at (x0, y0, z0) is given by

L(x, y, z) = f(x0, y0, z0) + fx(x0, y0, z0)(x− x0) + fy(x0, y0, z0)(y − y0) + fz(x0, y0, z0)(z − z0)
= x0 + y0 − z0 + 1 · (x− x0) + 1 · (y − y0)− 1 · (z − z0)
= x+ y − z

which agrees with f(x, y, z).

4. The cylinder geometry suggests to use cylinder coordinates, i.e. x = r cos θ, y =
r sin θ and z stays z. Then∫∫∫

W

(x2 + y2 + 2z2) dV =

∫ 2

−1

∫ 2

0

∫ 2π

0

(
(r cos θ)2 + (r sin θ)2 + 2z2

)
rdθdrdz

= 2π

∫ 2

−1

∫ 2

0

(
r3 + 2z2r

)
drdz

= 2π

∫ 2

−1

[1
4
r4 + z2r2

]r=2

r=0
dz

= 2π

∫ 2

−1
(4 + 4z2) dz

= 2π
[
4z +

4

3
z3
]z=2

z=−1

= 2π
(
(8 +

32

3
)− (−4− 4

3
)
)

= 2π
(
12 +

36

3

)
= 48π.
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